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In this paper, inspired by Tsallis’ probability distribution based on a ¢-deformed Boltzmann factor, we stipulate

a new g-deformed quantum dynamics by applying the inverse Wick rotation f — it to the Tsallis-deformed
Boltzmann factor. We obtain a new time-dependent g-deformed Schridinger equation. The free time-evolution of
a Gaussian wave packet and that induced by an harmonic interaction are studied within this ¢g-deformed quantum

mechanical framework.

1. Introduction

The year 2025 has been declared as the “International Year of Quan-
tum Science and Technology” by the United Nations General Assembly
[1]. It is celebrating 100 years of modern quantum mechanics, which
started in 1925 with Heisenberg’s fundamental paper [2]. Since then
quantum mechanics has not only formed our physical understanding of
the micro cosmos, it has entered our daily live in numerous ways. Quan-
tum technologies are nowadays almost everywhere in place, may it be
lasers, electronics, mobile phones or medical diagnostic to just mention
a few. One of the pillars of quantum mechanics has been Heisenberg’s
uncertainly relation discussed for the first time in his 1927 paper [3] and
being one of the basic foundations of the Copenhagen interpretation of
quantum mechanics.

It is this Heisenberg algebra [p, 4] = ih, i.e. the commutator between
momentum operator p and position operator §, and in particular its
various deformations, which had attracted much attention among the
physics community. For example, in 1947 Snyder [4] investigated the
possibility of a Lorentz invariant discrete space-time and found that the
Heisenberg’s algebra requires an addition term on the right-hand-side
(RHS) being proportional to p?. This deformation is still actively dis-
cussed in the literature in connection with quantum gravity [5] and
so-called gravitational quantum mechanics [6]. In 1950 Wigner [7] trig-
gered another deformation of the Heisenberg algebra, where on the RHS
now the parity operator appears instead. This was independently intro-
duced by Dunkl [8] and the associated deformed momentum operators
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are now well-established under his name, namely as Dunkl operators.
Another deformation of Heisenberg’s algebra is based on so-called quan-
tum groups an example of which is the g-deformed harmonic oscillator
algebra [a, aT]q =aa’ - qa"a =1 introduced in [9-11].

In quantum mechanics, the time-evolution of an initial quantum state
function is obtained by acting the evolution operator on it. The evolution
operator is unitary and, for a Hermitian time-independent Hamiltonian
H, is given by e~ 1 From now on and throughout this paper we set
7 = 1. In the thermal field theory [12-14], the Boltzmann factor e PH g
converted into the quantum evolution operator by transforming f — it,
that is, by applying the inverse Wick rotation. Here g = 1/(kgT) stands
for the inverse temperature multiplied by Boltzmann’s constant k z. The
probability of finding a quantum system in a state with energy E is
represented by that factor, Wy = e"F /Z, where the partition func-
tion basically serves as a normalisation factor Z = Tr e~PH That is, the
Boltzmann factor is the basis of statistics physics. In 1988 Tallis [15]
proposed a generalization of Boltzmann-Gibbs statistics by introducing
a g-deformed Boltzmann factor of the form

1
e (=BE) :=[1-(1-g@)pE]"~7, ®

also known as Tsallis’s distribution. It is this deformation which has
revolutionised statistical physics since then [16]. For example, the non-
additivity of the corresponding Tsallis entropy has opened new path-
ways to study systems being out of equilibrium or strongly correlated
systems. For a nice introduction and overview with applications see, for
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example, the article by Cartwright [17]. Here we only remark that in
(1) the ordinary Boltzmann factor is recovered in the limit ¢ — 1.

A first quantum mechanical investigation based on g-deformed plane
waves is due to Nobre, Rego-Monteiro and Tsallis [18] who investi-
gated associated Schrodinger, Klein-Gordon and Dirac equations. Here
we adopt a different approach by considering the g-deformed Boltzmann
factor (1) and using it to postulate a g-deformed evolution operator
via the inverse Wick transformation f — itz. This results in a new time-
dependent quantum mechanical framework. Based on such g-deformed
quantum evolution, we investigate the time-evolution of a free Gaussian
wave packet and that of a Gaussian oscillating wave packet.

The basic motivation for introducing Tsallis’ statistical distributions
is to overcome the restriction of undeformed Boltzmann-Gibbs statis-
tics, such as limitations on short-range and extensive systems. This g-
deformed Boltzmann factor has also found applications within quantum
dynamics. For example, deformed phase-space quantum dynamics was
studied in Ref. [19] and the Euclidean path integral approach was briefly
looked at in Ref. [20]. Hence, it is certainly of interest to investigate the
real-time quantum dynamics based on the inverse Wick rotation of Tsal-
lis’ distribution. Establish quantitative constraints on the parameter ¢ by
comparing the model’s predictions with established physical results, i.e.,
provide upper bounds on its value.

The structure of the paper is as follows. In Section 2, starting from
the g-deformed Tsallis-Boltzmann factor, we introduce a g-evolution
operator and the associated time-dependent g-deformed Schrédinger
equation. To show how the new formalism is applied, in Section 3 we an-
alyze the free g-evolution of a Gaussian wave packet, and in Section 4 we
study the g-evolution of the same Gaussian wave packet, but subjected
to a harmonic oscillator-type potential. The paper ends with conclusions
and some final remarks.

2. g-evolution operator and time-dependent g-deformed
Schrédinger equation

Let us start by considering the standard Schrédinger Hamiltonian for
a quantum particle with mass m > 0, which is of the form

N 1

H:i=-—d+V(x), )

2m

being V' (x) the external potential interacting with the particle. For sim-
plicity we work in one dimension and the quantum states y on which
H acts are living in the Hilbert space H = L*(R).

The g-deformed Tsallis Boltzmann factor given in the equation (1)
suggests us to propose a new g-deformed evolution operator defined by
eq(—itﬁ ). However, since in general this operator thus defined would
not be unitary, a further modification is required, the correct definition
of the g-deformed evolution operator being the following:

R e (—itH)
U,(0) i1= ———, 3

le,(—itH)|
where the meaning of the operator in the denominator is

N - Ay 1/2
le, (=it )| = (e, (=it ) e (+it D))" @
From (1) it is easy to obtain
1 tan[(1 — ¢)z
e,(=iz)=[1+(1 - g?z*| 10 exp{—iw } ®)
-9

where arctan stands for the principle branch of the inverse of the tangent
function, and from (4) we find

1
le, (=it HD)| = [1+ (1 — g)*(tH)*12-0 . (6)

Thus, the unitary g-deformed evolution operator induced by Tsallis’ g-
deformed Boltzmann factor, reads

i arctan[etH ] }
—

Uq(t) =exp { )
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Here we have introduced the alternative deformation parameter e = 1 —
q with € — 0 being the undeformed quantum system. Any initial state
yw(x,0) € H then evolves in time according to

w(x.0)=U,(Ow(x,0). (8)

At this stage let us look at the semi-group property of U (1), respectively
the Chapman-Kolmogorov relation, by considering

e, (—i(t; +1,)H) _ e (=it H)®, e,(—ityH)

Ut +1,) = — = - ©)
T e (=it + ) A 1+ €2(t, +1,)2 A2
where we have utilised the g-product as defined in [16,21,22]
1
a®,b:=(a" +b"—1)¢ (10)

obeying the relation e,(x) ®, ¢,(y) = e,(x + y). That is, for the com-
position law of the time evolution operator we need to first apply the
g-product to the non-normalised operators eq(—itﬁ ) and normalise the
result afterwards to achieve unitarity.

The corresponding time-dependent g-deformed Schrodinger equa-
tion then reads

i%y/(x,t)z A1+ 2 A2 y(x,1). 11)

In other words, we have found a new effective time-dependent Hamil-
tonian induced by the original one (2) as follows

~ H
H i (t) i= ———. 12)
eft 1+ 2202
For small et the effective Hamiltonian reads
Hyp(=H — (et B + 0 ((en*) 13)

and indicates that the limit of vanishing deformation parameter ¢ is
basically that same as for short times ¢. Hence, we expect that the time
evolution of the deformed quantum system deviates from the standard
behaviour with a leading term of the order (ef).

We may also look at the behaviour for 1 — oo. Assuming that our
original Hamiltonian (2) is bounded from below by H > 0 we observe
that

lim U, ()= ¢ 2 . a»
t—o00

That is, for large ¢ the dynamics in essence stops and the final state (i.e.
t — o0) is up to a trivial phase factor identical to the original state at
time t =0,

lim y(x,1) = €2 w(x,0). as)
— 00

Note, when looking at the behaviour for small ¢ we must take into ac-
count that this may only be valid when 7 is not too large.

As in standard quantum mechanics, the probability of finding a par-
ticle at position x at time ¢ is given by

P(x, 1) = w(x,0l”. 16)
Similarly, the expectation values of an operator Aina quantum state

described by y(x,t) reads

™

(Ay = / v (x, DAy (x,dx. 17)
0

We will make use of that when discussing the spreading of a Gaussian

wave packet in the absence of an external potential in the next section.
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3. Time evolution of Gaussian wave packet

In this section we will investigate the time evolution of a free Gaus-
sian wave packet. Hence, we set V' =0 in (2) and assume as initial state
the normalized Gaussian wave function

172 )
! ] e 42, (18)
2n02

Obviously the probability density of finding a particle at position x at
time O is then given by the centralized Gaussian distribution

w(x,0)= [

P(x,0) = |y (x.0)% = —— ¢ 22 19)

V2ro?
with a vanishing expectation value of position, (x) =0, and a width
characterised by ¢ with (x2) = 62.
Passage from position to momentum representation is accomplished
via a Fourier transformation resulting in another Gaussian in momentum
space

oo 172
B(k.0) = —— / ey (x,0) dx = [2_"] 12’ (20)
V2r 4, \V2r

Let us note that a plane wave ¢/** is an eigenfunction of the momentum
operator P = —id, with wave number k € R being the corresponding

eigenvalue, i.e. Pe’** = ke/**  In turn, they are also eigenfunctions of
the free undeformed Hamiltonian H = 2’% with eigenvalues given by
E, = % Therefore, the time evolution of such a plane wave ¢'** gen-
erated by the deformed time evolution operator (7) results in a multi-
plicative phase factor for each k. Hence, the time-evolved state, w(x,1),
is given by the inverse Fourier transform of the time-evolved momentum
distribution

IN i etk?
@k, 1) =U,(H)p(k,0) = exp {—; arctan [W] } @(k,0). 21)

Explicitly we have

1/2 . 5
w(x, )= R G / e~k gikx exp {—L arctan [%] } dk
Var | Vor| € 2m

(22)

This integral does not give a closed expression. So we consider the case
of small €. Up to second order in €, we have

1/2
. k%t 6.3
winn=—— | 2 e~ R oikx o= 3 [1+i£2k—t3] dk+0(h)
V2r | V2% - 24m-
(23)
which, when explicitly integrated, results in
x2
YT 242
von= | ——1 o () (1 + i%F(z, X)+ O(e“)>
o\ 2x (l + %) z
(24)

where we have introduced the time scale 7 = 2mc?. The remaining fac-
tor F is given by

— ()] 25)
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Fig. 1. Plot of the spreading (29) of a freely evolving Gaussian wave packet with
initial width ¢ = 1 and time scale 7 = 1, for €2 = 0 (pink), €2 = 0.0005 (purple)
and €2 =0.001 (brown).

Here we observe the previously expected result that the leading order
for small ¢, respectively small ¢, should be given by a term proportional
to (e1)?. The probability density is then given by

2

YA 3
P = ———c (%) [1"52<1) g(x,t>+o(64)]
2 T
0'\/27r\/1+;—2
(26)
where
1 t X 2 t X 4 1 X 6
g =AG+ B (£) +cd) (2) +p) (¥) @)
with time dependent coefficients
2 _ 2 _
Am=2-E=2 B@o=-22=1,
(1422) (1422)
2 4 Y o 28)
C(z)_iS—IOZ +z (Z)_L3—10z +3z
16 (1422)° B (1422)°

Now we are in a position to evaluate the spreading of the wave packet
up to second order in ¢, that is,

3

o2 22 12 2 % 2ot 4
(7 )=0(t)"=0 1+—2 1-15¢ > 3—6—+— | +0(") |.
T 1+5 w7

(29

In Fig. 1 we have plotted the spreading of the width o(f) for param-
eters 0 = 1,7 = | and various values of £. Namely, for e2=0 (pink),
£2 =0.0005 (purple) and €2 =0.001 (brown). We clearly see the slow-
ing down of spreading with increasing ¢ as expected from above result.
At this stage let us briefly investigate possible upper limits on the de-
formation parameter €. Obviously the phase in the quantum evolution
1k

2
. That is, the

2
is given by % arctan(ex) = x — %x3 + O(e*x%) with x = o

relative size R of the correction may be defined by

(30)

B magnitude of correction _ 2 5, &2 [1k? 2
"~ magnitude of leading term ~ 3 x 3 <ﬂ>
We demand R < 6, where 6 is a control parameter, which is not a phys-
ical constant of the theory but a chosen parameter that sets how small
the correction should be compared to the leading term. In other words,
& sets the accuracy requirement for the perturbation expansion. If § ~ 1,
the correction can be as large as the leading term, and the expansion is
barely consistent. In principle, 6 should be obtained by experiments ob-
serving deviations from the standard Heisenberg-Schrodinger quantum
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mechanics. The recent experiment exposed in Ref. [23] indicates that
such deviations are very small. Their Fig. 3c suggests that 6 < 0.01. Re-
quiring R < 6 and assuming a typical momentum k? =~ #, we arrive at
the limit

2
52<125(§) . [€I))
With 6 =0.01 and 7/7 = 6 as used in Fig. 1, we have the upper limit
€2 = 355 = 0.00333.

Let us also briefly consider the time-dependent uncertainty relation
by recalling Ax = ¢(¢) and noting that Ap = \/(k%) = 1 /20 remains con-
stant, resulting in

ApAx=Lii/14 L 3—6ﬁ+ﬁ +0(e*)
P T2 2 74 ’

(32)
4. Oscillating wave packet

As a second example we consider the modified quantum dynamics
in the presence of an harmonic interaction. That is, we consider the
undeformed system

A L o m 39
H:—ﬂax+5a)x N

The eigenvalues and normalised eigenfunctions of (33) are well-known
and given by

1/2
1 _le
E,=o(n+3). un<x>=< = ,> H, (&2
n!

T

w>0. (33)

n=0,1,2,3,.... (€2)]

In the above H, stands for the Hermite polynomial of order n, & = ax
and a = \/%

The deformed time evolution of such an eigenstate is then given via
(7) in the explicit form

arctan[ewt (n + % )]

U, (Ou,(x) = expq —i Uy (x). (35)

13

Therefore, decomposing an arbitrary initial state y(x,0) into the har-
monic oscillator eigenstates,

oo

w(x,0)= Z A, u,(x), A, = / u, (X)y(x,0)dx, (36)
n=0

—00

we arrive at the quantum state at a given time ¢ > 0

arctan[ewt (n + % )]

w(x, 1) = 2 Apu,(x)exp] —i Ee— 37)
n=0

It is this sum which may be challenging to bring into a closed form
expression.

Now let us consider the case where the initial state is given by a
Gaussian centred around a fixed point a,

o\ /4 2
w(x,0)= (a— ) e (38)
T
The corresponding amplitudes may be calculated explicitly and read
% !
An = 0 e_Z'ffz) s 50 =aaqa. (39)

\/2"n!
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At that stage we utilise the generating function for Hermite polynomials
in the form

k oo H
F(¢.p) = <P%) 8217:_‘72 =Z —;E‘S)nkpn 40)
n=0 :

and note
Fo(&.p) = 577,
Fy(&,p) = &P (=207 +2p8),
Fy(&.p) = 2577 (4p* — 4p? — 8p ¢ + 4p°E2 + 2pE),
Fy(E,p) = X577 (—8p5 4 24p* — 8p2 + 24p5¢ — 24p*E2 + 83 &3
—36p3E + 8pPE> + 2pé). (41)

Considering only terms up to second order in ¢ in (37) and setting p =
%Oe"'“” , we arrive at

2 1/4 2 2 .
Wit = (‘%) exp [—5— b _ et +2p¢—p2] G(1,x) (42)

2 4 2
where
e 3 6F (& p) 12F (¢ p) 8F(Ep) 4
G(t,x) = l+i—wn’ |1+ fo +O(Y).
(tx) 124( ) e2pE—p? e2pE—p? e2pE—p? S

(43)
Or more explicitly
G(t,x) =1+ ie2(wi)3x
x[1= 350+ 10t = 22 + 8% - 887 + 587 44
#1696+ 228 + 2pe| + 0.

The associated probability density P(x,?) = |w(x,1)|? is of the form

2
P(x,1) = | L@ Cmacoson? |G 1|2 (45)
T

with
&8 &¢
|G, x)|* = 1 + 2% (wt)? [2—2 sin(6wr) — % sin(Swr)

+ § (62 _ §> sin(4wt) — _ég_é (52 + 6) sin(3wt)
2 4 3
2
+ %0 (% — 78 ) sinor) - 5%05 sin(@n| +0(").  (46)

The probability density oscillates in time with a period T = 2;” In the
left panel of Fig. 2 we show P(x,T/8) for a =1, a = 1 and various values
for £, namely &2 = 0 (pink), €2 = 0.01 (purple) and 2 = 0.02 (brown); in
the right panel of this figure the plot of P(x,T /4) is shown. We observe
a behaviour being different to that of the freely evolving wave packet.
Obviously, here the spreading of the wave packet behaves differently
for the regions x < 0 and x > 0, which is due to the asymmetric initial
wave packet (38). In the region x > 0, in contrast to the free motion, the
spreading increases with increasing deformation parameter . While for
region x < 0 we see the opposite behaviour but much less dominant.
We also observe an oscillatory behaviour in time for this spreading as
expected due to the harmonic interaction. This is more pronounce for
the region x > 0.

5. Conclusion

In this paper we introduced a new unitary g-deformed evolution op-
erator generating a quantum mechanical time evolution, which may be
called Tsallis evolution. This was done by transforming f — if in the
g-deformed Boltzmann factor appearing in the non-extensive g-entropy
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Fig. 2. Plot of the probability density (45) for the oscillating wave packet at t = = /4w (left panel) and wt = 7 /2w (right panel) with parameters a=1 and a = 1, and

for €2 = 0 (pink), €2 = 0.01 (purple), and £2 = 0.02 (brown).

theory of Tsallis. Using this we derived a time-dependent g-deformed
Schrodinger equation. We investigated the time-evolution of a Gaussian
wave packet based on this g-deformed Schrodinger-Tsallis equation. Be-
cause there is no closed expression for the time evolution of such wave
packet, we considered the time-dependent Gaussian wave packet up to
a second order in € = 1 — g. Thus, our results become physical for evo-
lution during a small time as discussed in Section 2. We observed that
for the free Tsallis-deformed quantum dynamics the spreading of such
a wave packet is increased by this deformation. In a second example
we introduced an external harmonic interaction and assumed for the
initial state a decentralized Gaussian wave packet. Here the observed
time-dependent behaviour of the spreading was rather different as that
observed for the free deformed quantum dynamics, as discussed above.
Clearly we require further investigation of the Tsallis evolution for addi-
tional quantum mechanical systems such as two-level Hamiltonian with
the initial state being an overlap of the two eigenstates with different
energies like, e.g., a Rabi model Hamiltonian. Another interesting possi-
bility is to study the g-deformed evolution of a quantum state confined
in a box. We are currently working on both lines of research.

Let us conclude that the Tsallis deformation of the quantum mechan-
ical time evolution has an observable effect but may not be calculated
in a closed form. Only for eigenfunctions of the Hamiltonian H, say
Ay = Eyy, we may find such a closed form:

arctan[etE
o], @)

g (t) =exp { -
But in this case, the effect will not materialize because |y 12 =
|1//E(t)|2 = constant. Therefore, for any effect to be observed, any initial
state must be a linear combination of several eigenstates, as described
here for the free quantum system and the harmonic oscillator.
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