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A R T I C L E I N F O A B S T R A C T 

Communicated by M.G.A. Paris In this paper, inspired by Tsallis’ probability distribution based on a 𝑞-deformed Boltzmann factor, we stipulate 
a new 𝑞-deformed quantum dynamics by applying the inverse Wick rotation 𝛽 → 𝑖𝑡 to the Tsallis-deformed 
Boltzmann factor. We obtain a new time-dependent 𝑞-deformed Schrödinger equation. The free time-evolution of 
a Gaussian wave packet and that induced by an harmonic interaction are studied within this 𝑞-deformed quantum 
mechanical framework.

1. Introduction

The year 2025 has been declared as the ``International Year of Quan
tum Science and Technology'' by the United Nations General Assembly 
[1]. It is celebrating 100 years of modern quantum mechanics, which 
started in 1925 with Heisenberg’s fundamental paper [2]. Since then 
quantum mechanics has not only formed our physical understanding of 
the micro cosmos, it has entered our daily live in numerous ways. Quan
tum technologies are nowadays almost everywhere in place, may it be 
lasers, electronics, mobile phones or medical diagnostic to just mention 
a few. One of the pillars of quantum mechanics has been Heisenberg’s 
uncertainly relation discussed for the first time in his 1927 paper [3] and 
being one of the basic foundations of the Copenhagen interpretation of 
quantum mechanics.

It is this Heisenberg algebra [𝑝̂, 𝑞] = 𝑖ℏ, i.e. the commutator between 
momentum operator 𝑝̂ and position operator 𝑞, and in particular its 
various deformations, which had attracted much attention among the 
physics community. For example, in 1947 Snyder [4] investigated the 
possibility of a Lorentz invariant discrete space-time and found that the 
Heisenberg’s algebra requires an addition term on the right-hand-side 
(RHS) being proportional to 𝑝̂2. This deformation is still actively dis
cussed in the literature in connection with quantum gravity [5] and 
so-called gravitational quantum mechanics [6]. In 1950 Wigner [7] trig
gered another deformation of the Heisenberg algebra, where on the RHS 
now the parity operator appears instead. This was independently intro
duced by Dunkl [8] and the associated deformed momentum operators 
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are now well-established under his name, namely as Dunkl operators. 
Another deformation of Heisenberg’s algebra is based on so-called quan
tum groups an example of which is the 𝑞-deformed harmonic oscillator 
algebra [𝑎, 𝑎†]𝑞 = 𝑎𝑎† − 𝑞𝑎†𝑎 = 1 introduced in [9--11].

In quantum mechanics, the time-evolution of an initial quantum state 
function is obtained by acting the evolution operator on it. The evolution 
operator is unitary and, for a Hermitian time-independent Hamiltonian 
𝐻̂ , is given by 𝑒−𝑖𝑡𝐻̂ . From now on and throughout this paper we set 
ℏ = 1. In the thermal field theory [12--14], the Boltzmann factor 𝑒−𝛽𝐻̂ is 
converted into the quantum evolution operator by transforming 𝛽 → 𝑖𝑡, 
that is, by applying the inverse Wick rotation. Here 𝛽 = 1∕(𝑘𝐵𝑇 ) stands 
for the inverse temperature multiplied by Boltzmann’s constant 𝑘𝐵 . The 
probability of finding a quantum system in a state with energy 𝐸 is 
represented by that factor, 𝑊𝐸 = 𝑒−𝛽𝐸∕𝑍 , where the partition func

tion basically serves as a normalisation factor 𝑍 = Tr 𝑒−𝛽𝐻̂ . That is, the 
Boltzmann factor is the basis of statistics physics. In 1988 Tallis [15] 
proposed a generalization of Boltzmann-Gibbs statistics by introducing 
a 𝑞-deformed Boltzmann factor of the form

𝑒𝑞(−𝛽𝐸) ∶= [1 − (1 − 𝑞)𝛽𝐸]
1 

1−𝑞 , (1)

also known as Tsallis’s distribution. It is this deformation which has 
revolutionised statistical physics since then [16]. For example, the non
additivity of the corresponding Tsallis entropy has opened new path
ways to study systems being out of equilibrium or strongly correlated 
systems. For a nice introduction and overview with applications see, for 
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example, the article by Cartwright [17]. Here we only remark that in 
(1) the ordinary Boltzmann factor is recovered in the limit 𝑞→ 1.

A first quantum mechanical investigation based on 𝑞-deformed plane 
waves is due to Nobre, Rego-Monteiro and Tsallis [18] who investi
gated associated Schrödinger, Klein-Gordon and Dirac equations. Here 
we adopt a different approach by considering the 𝑞-deformed Boltzmann 
factor (1) and using it to postulate a 𝑞-deformed evolution operator 
via the inverse Wick transformation 𝛽 → 𝑖𝑡. This results in a new time
dependent quantum mechanical framework. Based on such 𝑞-deformed 
quantum evolution, we investigate the time-evolution of a free Gaussian 
wave packet and that of a Gaussian oscillating wave packet.

The basic motivation for introducing Tsallis’ statistical distributions 
is to overcome the restriction of undeformed Boltzmann-Gibbs statis
tics, such as limitations on short-range and extensive systems. This q
deformed Boltzmann factor has also found applications within quantum 
dynamics. For example, deformed phase-space quantum dynamics was 
studied in Ref. [19] and the Euclidean path integral approach was briefly 
looked at in Ref. [20]. Hence, it is certainly of interest to investigate the 
real-time quantum dynamics based on the inverse Wick rotation of Tsal
lis’ distribution. Establish quantitative constraints on the parameter 𝜖 by 
comparing the model’s predictions with established physical results, i.e., 
provide upper bounds on its value.

The structure of the paper is as follows. In Section 2, starting from 
the 𝑞-deformed Tsallis-Boltzmann factor, we introduce a 𝑞-evolution 
operator and the associated time-dependent 𝑞-deformed Schrödinger 
equation. To show how the new formalism is applied, in Section 3 we an
alyze the free 𝑞-evolution of a Gaussian wave packet, and in Section 4 we 
study the 𝑞-evolution of the same Gaussian wave packet, but subjected 
to a harmonic oscillator-type potential. The paper ends with conclusions 
and some final remarks.

2. 𝒒-evolution operator and time-dependent 𝒒-deformed 
Schrödinger equation

Let us start by considering the standard Schrödinger Hamiltonian for 
a quantum particle with mass 𝑚 > 0, which is of the form

𝐻̂ ∶= − 1 
2𝑚

𝜕2
𝑥
+ 𝑉 (𝑥), (2)

being 𝑉 (𝑥) the external potential interacting with the particle. For sim
plicity we work in one dimension and the quantum states 𝜓 on which 
𝐻̂ acts are living in the Hilbert space  =𝐿2(ℝ).

The 𝑞-deformed Tsallis Boltzmann factor given in the equation (1)
suggests us to propose a new 𝑞-deformed evolution operator defined by 
𝑒𝑞(−𝑖𝑡𝐻̂). However, since in general this operator thus defined would 
not be unitary, a further modification is required, the correct definition 
of the 𝑞-deformed evolution operator being the following:

𝑈̂𝑞(𝑡) ∶=
𝑒𝑞(−𝑖𝑡𝐻̂) |𝑒𝑞(−𝑖𝑡𝐻̂)| , (3)

where the meaning of the operator in the denominator is

|𝑒𝑞(−𝑖𝑡𝐻̂)| = (
𝑒𝑞(−𝑖𝑡𝐻̂) 𝑒𝑞(+𝑖𝑡𝐻̂)

)1∕2
(4)

From (1) it is easy to obtain

𝑒𝑞(−𝑖𝑧) = [1 + (1 − 𝑞)2𝑧2]
1 

2(1−𝑞) exp
{
−𝑖 arctan[(1 − 𝑞)𝑧]

1 − 𝑞 

}
, (5)

where arctan stands for the principle branch of the inverse of the tangent 
function, and from (4) we find

|𝑒𝑞(−𝑖𝑡𝐻̂)| = [1 + (1 − 𝑞)2(𝑡𝐻̂)2]
1 

2(1−𝑞) . (6)

Thus, the unitary 𝑞-deformed evolution operator induced by Tsallis’ 𝑞
deformed Boltzmann factor, reads

𝑈̂𝑞(𝑡) = exp
{
−𝑖 arctan[𝜀𝑡𝐻̂]

𝜀 

}
. (7)

Here we have introduced the alternative deformation parameter 𝜀 = 1−
𝑞 with 𝜀→ 0 being the undeformed quantum system. Any initial state 
𝜓(𝑥,0) ∈ then evolves in time according to

𝜓(𝑥, 𝑡) = 𝑈̂𝑞(𝑡)𝜓(𝑥,0) . (8)

At this stage let us look at the semi-group property of 𝑈̂𝑞(𝑡), respectively 
the Chapman-Kolmogorov relation, by considering

𝑈̂𝑞(𝑡1 + 𝑡2) =
𝑒𝑞(−𝑖(𝑡1 + 𝑡2)𝐻̂) |𝑒𝑞(−𝑖(𝑡1 + 𝑡2)𝐻̂)| = 𝑒𝑞(−𝑖𝑡1𝐻̂)⊗𝑞 𝑒𝑞(−𝑖𝑡2𝐻̂)

1 + 𝜀2(𝑡1 + 𝑡2)2𝐻̂2
, (9)

where we have utilised the 𝑞-product as defined in [16,21,22]

𝑎⊗𝑞 𝑏 ∶= (𝑎𝜀 + 𝑏𝜀 − 1)
1
𝜀 (10)

obeying the relation 𝑒𝑞(𝑥) ⊗𝑞 𝑒𝑞(𝑦) = 𝑒𝑞(𝑥 + 𝑦). That is, for the com
position law of the time evolution operator we need to first apply the 
𝑞-product to the non-normalised operators 𝑒𝑞(−𝑖𝑡𝐻̂) and normalise the 
result afterwards to achieve unitarity.

The corresponding time-dependent 𝑞-deformed Schrödinger equa
tion then reads

𝑖
𝜕

𝜕𝑡
𝜓(𝑥, 𝑡) = 𝐻̂[1 + 𝜀2𝑡2𝐻̂2]−1𝜓(𝑥, 𝑡) . (11)

In other words, we have found a new effective time-dependent Hamil
tonian induced by the original one (2) as follows

𝐻̂eff (𝑡) ∶=
𝐻̂

1 + 𝜀2𝑡2𝐻̂2
. (12)

For small 𝜀𝑡 the effective Hamiltonian reads

𝐻̂eff (𝑡) = 𝐻̂ − (𝜀𝑡)2 𝐻̂3 +𝑂
(
(𝜀𝑡)4

)
(13)

and indicates that the limit of vanishing deformation parameter 𝜀 is 
basically that same as for short times 𝑡. Hence, we expect that the time 
evolution of the deformed quantum system deviates from the standard 
behaviour with a leading term of the order (𝜀𝑡)2.

We may also look at the behaviour for 𝑡→ ∞. Assuming that our 
original Hamiltonian (2) is bounded from below by 𝐻̂ > 0 we observe 
that

lim 
𝑡→∞

𝑈̂𝑞(𝑡) = 𝑒
− 𝑖𝜋 

2𝜀 . (14)

That is, for large 𝑡 the dynamics in essence stops and the final state (i.e. 
𝑡→ ∞) is up to a trivial phase factor identical to the original state at 
time 𝑡 = 0,

lim 
𝑡→∞

𝜓(𝑥, 𝑡) = 𝑒
− 𝑖𝜋 

2𝜀 𝜓(𝑥,0) . (15)

Note, when looking at the behaviour for small 𝜀 we must take into ac
count that this may only be valid when 𝑡 is not too large.

As in standard quantum mechanics, the probability of finding a par
ticle at position 𝑥 at time 𝑡 is given by

𝑃 (𝑥, 𝑡) = |𝜓(𝑥, 𝑡)|2 . (16)

Similarly, the expectation values of an operator 𝐴̂ in a quantum state 
described by 𝜓(𝑥, 𝑡) reads

⟨𝐴̂⟩ = ∞ 

∫
−∞

𝜓∗(𝑥, 𝑡)𝐴̂𝜓(𝑥, 𝑡)𝑑𝑥 . (17)

We will make use of that when discussing the spreading of a Gaussian 
wave packet in the absence of an external potential in the next section.
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3. Time evolution of Gaussian wave packet

In this section we will investigate the time evolution of a free Gaus
sian wave packet. Hence, we set 𝑉 = 0 in (2) and assume as initial state 
the normalized Gaussian wave function

𝜓(𝑥,0) =

[
1 √
2𝜋𝜎2

]1∕2

𝑒
− 𝑥2

4𝜎2 . (18)

Obviously the probability density of finding a particle at position 𝑥 at 
time 0 is then given by the centralized Gaussian distribution

𝑃 (𝑥,0) = |𝜓(𝑥,0)|2 = 1 √
2𝜋𝜎2

𝑒
− 𝑥2

2𝜎2 (19)

with a vanishing expectation value of position, ⟨𝑥⟩ = 0, and a width 
characterised by 𝜎 with ⟨𝑥2⟩ = 𝜎2.

Passage from position to momentum representation is accomplished 
via a Fourier transformation resulting in another Gaussian in momentum 
space

𝜙(𝑘,0) = 1 √
2𝜋

∞ 

∫
−∞

𝑒−𝑖𝑘𝑥 𝜓(𝑥,0) 𝑑𝑥 =

[
2𝜎 √
2𝜋

]1∕2

𝑒
− 1

4 (2𝜎𝑘)
2
. (20)

Let us note that a plane wave 𝑒𝑖𝑘𝑥 is an eigenfunction of the momentum 
operator 𝑃 = −𝑖𝜕𝑥 with wave number 𝑘 ∈ ℝ being the corresponding 
eigenvalue, i.e. 𝑃𝑒𝑖𝑘𝑥 = 𝑘𝑒𝑖𝑘𝑥. In turn, they are also eigenfunctions of 
the free undeformed Hamiltonian 𝐻̂ = 𝑃 2

2𝑚 with eigenvalues given by 

𝐸𝑘 =
𝑘2

2𝑚 . Therefore, the time evolution of such a plane wave 𝑒𝑖𝑘𝑥 gen
erated by the deformed time evolution operator (7) results in a multi
plicative phase factor for each 𝑘. Hence, the time-evolved state, 𝜓(𝑥, 𝑡), 
is given by the inverse Fourier transform of the time-evolved momentum 
distribution

𝜙(𝑘, 𝑡) = 𝑈̂𝑞(𝑡)𝜙(𝑘,0) = exp
{
− 𝑖 
𝜀
arctan

[
𝜀𝑡𝑘2

2𝑚 

]}
𝜙(𝑘,0) . (21)

Explicitly we have

𝜓(𝑥, 𝑡) = 1 √
2𝜋

[
2𝜎 √
2𝜋

]1∕2 ∞ 

∫
−∞

𝑒−𝜎
2𝑘2𝑒𝑖𝑘𝑥 exp

{
− 𝑖 
𝜀
arctan

[
𝜀𝑡𝑘2

2𝑚 

]}
𝑑𝑘

(22)

This integral does not give a closed expression. So we consider the case 
of small 𝜀. Up to second order in 𝜀, we have

𝜓(𝑥, 𝑡) = 1 √
2𝜋

[
2𝜎 √
2𝜋

]1∕2 ∞ 

∫
−∞

𝑒−𝜎
2𝑘2𝑒𝑖𝑘𝑥𝑒

− 𝑖𝑘2 𝑡
2𝑚 

[
1+𝑖𝜀2 𝑘

6𝑡3

24𝑚3

]
𝑑𝑘+𝑂(𝜀4)

(23)

which, when explicitly integrated, results in

𝜓(𝑥, 𝑡) =
√√√√ 1 

𝜎
√
2𝜋

(
1 + 𝑖𝑡

𝜏

) 𝑒− 𝑥2

4𝜎2
(
1+ 𝑖𝑡

𝜏

) (
1 + 𝑖

𝜀2𝑡2

𝜏2
𝐹 (𝑡, 𝑥) +𝑂(𝜀4)

)
(24)

where we have introduced the time scale 𝜏 = 2𝑚𝜎2. The remaining fac
tor 𝐹 is given by

𝐹 (𝑡, 𝑥) = 1 
24

1 (
1 + 𝑖𝑡

𝜏

)3

[
15 − 45

2 
1 

1 + 𝑖𝑡

𝜏

(
𝑥 
𝜎

)2
+ 15

4 
1 (

1 + 𝑖𝑡

𝜏

)2

(
𝑥 
𝜎

)4

− 1
8

1 (
1 + 𝑖𝑡

𝜏

)3

(
𝑥 
𝜎

)6
]
. (25)

Fig. 1. Plot of the spreading (29) of a freely evolving Gaussian wave packet with 
initial width 𝜎 = 1 and time scale 𝜏 = 1, for 𝜀2 = 0 (pink), 𝜀2 = 0.0005 (purple) 
and 𝜀2 = 0.001 (brown).

Here we observe the previously expected result that the leading order 
for small 𝜀, respectively small 𝑡, should be given by a term proportional 
to (𝜀𝑡)2. The probability density is then given by

𝑃 (𝑥, 𝑡) = 1 

𝜎
√
2𝜋

√
1 + 𝑡2

𝜏2

𝑒

− 𝑥2

2𝜎2
(
1+ 𝑡2

𝜏2

) [
1 − 𝜀2

(
𝑡 
𝜏

)3
𝑔(𝑥, 𝑡) +𝑂(𝜀4)

]
(26)

where

𝑔(𝑥, 𝑡) =𝐴( 𝑡 
𝜏
) +𝐵( 𝑡 

𝜏
) 
(
𝑥 
𝜎

)2
+𝐶( 𝑡 

𝜏
) 
(
𝑥 
𝜎

)4
+𝐷( 𝑡 

𝜏
) 
(
𝑥 
𝜎

)6
(27)

with time dependent coefficients

𝐴(𝑧) = 5
4

𝑧2 − 3 (
1 + 𝑧2

)3 , 𝐵(𝑧) = −15
2 

𝑧2 − 1 (
1 + 𝑧2

)4 ,
𝐶(𝑧) = 5 

16
5 − 10𝑧2 + 𝑧4(

1 + 𝑧2
)5 , 𝐷(𝑧) = 1 

48
3 − 10𝑧2 + 3𝑧4(

1 + 𝑧2
)6 .

(28)

Now we are in a position to evaluate the spreading of the wave packet 
up to second order in 𝜀, that is,

⟨𝑥̂2⟩=𝜎(𝑡)2=𝜎2(1+ 𝑡2

𝜏2

)⎡⎢⎢⎢⎣1−15𝜀
2
⎛⎜⎜⎝

𝑡 
𝜏

1+ 𝑡2

𝜏2

⎞⎟⎟⎠
3(

3−6 𝑡
2

𝜏2
+ 𝑡4

𝜏4

)
+𝑂(𝜀4)

⎤⎥⎥⎥⎦ .
(29)

In Fig. 1 we have plotted the spreading of the width 𝜎(𝑡) for param
eters 𝜎 = 1, 𝜏 = 1 and various values of 𝜀. Namely, for 𝜀2 = 0 (pink), 
𝜀2 = 0.0005 (purple) and 𝜀2 = 0.001 (brown). We clearly see the slow
ing down of spreading with increasing 𝜀 as expected from above result. 
At this stage let us briefly investigate possible upper limits on the de
formation parameter 𝜀. Obviously the phase in the quantum evolution 
is given by 1

𝜀 arctan(𝜀𝑥) = 𝑥− 𝜀2

3 𝑥
3 +(𝜀4𝑥5) with 𝑥 = 𝑡𝑘2

2𝑚 . That is, the 
relative size 𝑅 of the correction may be defined by

𝑅 =
magnitude of correction

magnitude of leading term
= 𝜀2

3 
𝑥2 = 𝜀2

3 

(
𝑡𝑘2

2𝑚 

)2
. (30)

We demand 𝑅< 𝛿, where 𝛿 is a control parameter, which is not a phys
ical constant of the theory but a chosen parameter that sets how small 
the correction should be compared to the leading term. In other words, 
𝛿 sets the accuracy requirement for the perturbation expansion. If 𝛿 ∼ 1, 
the correction can be as large as the leading term, and the expansion is 
barely consistent. In principle, 𝛿 should be obtained by experiments ob
serving deviations from the standard Heisenberg-Schrödinger quantum 
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mechanics. The recent experiment exposed in Ref. [23] indicates that 
such deviations are very small. Their Fig. 3c suggests that 𝛿 ≲ 0.01. Re
quiring 𝑅< 𝛿 and assuming a typical momentum 𝑘2 ≃ 1 

2𝜎2 , we arrive at 
the limit

𝜀2 < 12𝛿
(
𝜏

𝑡 

)2
. (31)

With 𝛿 = 0.01 and 𝑡∕𝜏 = 6 as used in Fig. 1, we have the upper limit 
𝜀2max =

1 
300 = 0.00333.

Let us also briefly consider the time-dependent uncertainty relation 
by recalling Δ𝑥 = 𝜎(𝑡) and noting that Δ𝑝 =

√⟨𝑘2⟩ = 1∕2𝜎 remains con
stant, resulting in

Δ𝑝Δ𝑥 = 1
2

√
1 + 𝑡2

𝜏2

⎡⎢⎢⎢⎣1 −
15
2 
𝜀2

⎛⎜⎜⎝
𝑡 
𝜏

1 + 𝑡2

𝜏2

⎞⎟⎟⎠
3(

3 − 6 𝑡
2

𝜏2
+ 𝑡4

𝜏4

)
+𝑂(𝜀4)

⎤⎥⎥⎥⎦ .
(32)

4. Oscillating wave packet

As a second example we consider the modified quantum dynamics 
in the presence of an harmonic interaction. That is, we consider the 
undeformed system

𝐻̂ = − 1 
2𝑚

𝜕2
𝑥
+ 𝑚

2 
𝜔2𝑥2 , 𝜔 > 0 . (33)

The eigenvalues and normalised eigenfunctions of (33) are well-known 
and given by

𝐸𝑛 = 𝜔

(
𝑛+ 1

2

)
, 𝑢𝑛(𝑥) =

(
𝛼√
𝜋2𝑛𝑛!

)1∕2

𝐻𝑛(𝜉)𝑒
− 1

2 𝜉
2
,

𝑛 = 0,1,2,3,… . (34)

In the above 𝐻𝑛 stands for the Hermite polynomial of order 𝑛, 𝜉 = 𝛼𝑥

and 𝛼 =
√
𝑚𝜔.

The deformed time evolution of such an eigenstate is then given via 
(7) in the explicit form

𝑈̂𝑞(𝑡)𝑢𝑛(𝑥) = exp
⎧⎪⎨⎪⎩−𝑖 

arctan[𝜀𝜔𝑡
(
𝑛+ 1

2

)
]

𝜀 

⎫⎪⎬⎪⎭𝑢𝑛(𝑥) . (35)

Therefore, decomposing an arbitrary initial state 𝜓(𝑥,0) into the har
monic oscillator eigenstates,

𝜓(𝑥,0) =
∞ ∑
𝑛=0 

𝐴𝑛 𝑢𝑛(𝑥) , 𝐴𝑛 =

∞ 

∫
−∞

𝑢𝑛(𝑥)𝜓(𝑥,0)𝑑𝑥 , (36)

we arrive at the quantum state at a given time 𝑡 > 0

𝜓(𝑥, 𝑡) =
∞ ∑
𝑛=0 

𝐴𝑛𝑢𝑛(𝑥) exp
⎧⎪⎨⎪⎩−𝑖 

arctan[𝜀𝜔𝑡
(
𝑛+ 1

2

)
]

𝜀 

⎫⎪⎬⎪⎭ . (37)

It is this sum which may be challenging to bring into a closed form 
expression.

Now let us consider the case where the initial state is given by a 
Gaussian centred around a fixed point 𝑎,

𝜓(𝑥,0) =
(
𝛼2

𝜋

)1∕4
𝑒
− 𝛼2

2 (𝑥−𝑎)2 . (38)

The corresponding amplitudes may be calculated explicitly and read

𝐴𝑛 =
𝜉𝑛0√
2𝑛𝑛!

𝑒
− 1

4 𝜉
2
0 , 𝜉0 = 𝛼𝑎 . (39)

At that stage we utilise the generating function for Hermite polynomials 
in the form

𝐹𝑘(𝜉, 𝑝) ∶=
(
𝑝
𝜕

𝜕𝑝

)𝑘

𝑒2𝑝𝜉−𝑝
2 =

∞ ∑
𝑛=0 

𝐻𝑛(𝜉)
𝑛! 

𝑛𝑘𝑝𝑛 (40)

and note

𝐹0(𝜉, 𝑝) = 𝑒2𝑝𝜉−𝑝
2
,

𝐹1(𝜉, 𝑝) = 𝑒2𝑝𝜉−𝑝
2 (−2𝑝2 + 2𝑝𝜉),

𝐹2(𝜉, 𝑝) = 𝑒2𝑝𝜉−𝑝
2 (4𝑝4 − 4𝑝2 − 8𝑝3𝜉 + 4𝑝2𝜉2 + 2𝑝𝜉),

𝐹3(𝜉, 𝑝) = 𝑒2𝑝𝜉−𝑝
2 (−8𝑝6 + 24𝑝4 − 8𝑝2 + 24𝑝5𝜉 − 24𝑝4𝜉2 + 8𝑝3𝜉3

− 36𝑝3𝜉 + 8𝑝2𝜉2 + 2𝑝𝜉). (41)

Considering only terms up to second order in 𝜀 in (37) and setting 𝑝 =
𝜉0
2 𝑒

−𝑖𝜔𝑡, we arrive at

𝜓(𝑥, 𝑡) =
(
𝛼2

𝜋

)1∕4
exp

[
− 𝜉2

2 
−
𝜉20
4 

− 𝑖𝜔𝑡

2 
+ 2𝑝𝜉 − 𝑝2

]
𝐺(𝑡, 𝑥) (42)

where

𝐺(𝑡, 𝑥) = 1+𝑖 𝜖
2

24
(𝑤𝑡)3

[
1+

6 𝐹1(𝜉, 𝑝)
𝑒2𝑝𝜉−𝑝2

+
12 𝐹2(𝜉, 𝑝)
𝑒2𝑝𝜉−𝑝2

+
8 𝐹3(𝜉, 𝑝)
𝑒2𝑝𝜉−𝑝2

]
+𝑂(𝜀4) .

(43)

Or more explicitly

𝐺(𝑡, 𝑥) = 1 + 𝑖𝜀2(𝑤𝑡)3×
×
[
1 − 8

3𝑝
6 + 10𝑝4 − 31

6 𝑝
2 + 8𝑝5𝜉 − 8𝑝4𝜉2 + 8

3𝑝
3𝜉3

+16𝑝3𝜉 + 14
3 𝑝

2𝜉2 + 5
3𝑝𝜉

]
+𝑂(𝜀4) .

(44)

The associated probability density 𝑃 (𝑥, 𝑡) = |𝜓(𝑥, 𝑡)|2 is of the form

𝑃 (𝑥, 𝑡) =
√

𝛼2

𝜋
𝑒−𝛼

2(𝑥−𝑎 cos𝜔𝑡)2 |𝐺(𝑥, 𝑡)|2 (45)

with

|𝐺(𝑡, 𝑥)|2 = 1 + 2𝜀2(𝜔𝑡)3
[
𝜉60
24

sin(6𝜔𝑡) −
𝜉50𝜉

4 
sin(5𝜔𝑡)

+
𝜉40
2 

(
𝜉2 − 5

4

)
sin(4𝜔𝑡) − −

𝜉30𝜉

3 
(
𝜉2 + 6

)
sin(3𝜔𝑡)

+
𝜉20
6 

(31
4 

− 7𝜉2
)
sin(2𝜔𝑡) −

5𝜉0𝜉
6 

sin(𝜔𝑡)
]
+𝑂(𝜀4) . (46)

The probability density oscillates in time with a period 𝑇 = 2𝜋
𝜔 . In the 

left panel of Fig. 2 we show 𝑃 (𝑥,𝑇 ∕8) for 𝑎 = 1, 𝛼 = 1 and various values 
for 𝜀, namely 𝜀2 = 0 (pink), 𝜀2 = 0.01 (purple) and 𝜀2 = 0.02 (brown); in 
the right panel of this figure the plot of 𝑃 (𝑥,𝑇 ∕4) is shown. We observe 
a behaviour being different to that of the freely evolving wave packet. 
Obviously, here the spreading of the wave packet behaves differently 
for the regions 𝑥 < 0 and 𝑥 > 0, which is due to the asymmetric initial 
wave packet (38). In the region 𝑥 > 0, in contrast to the free motion, the 
spreading increases with increasing deformation parameter 𝜀. While for 
region 𝑥 < 0 we see the opposite behaviour but much less dominant. 
We also observe an oscillatory behaviour in time for this spreading as 
expected due to the harmonic interaction. This is more pronounce for 
the region 𝑥 > 0.

5. Conclusion

In this paper we introduced a new unitary 𝑞-deformed evolution op
erator generating a quantum mechanical time evolution, which may be 
called Tsallis evolution. This was done by transforming 𝛽 → 𝑖𝑡 in the 
𝑞-deformed Boltzmann factor appearing in the non-extensive 𝑞-entropy 

Physics Letters A 563 (2025) 131051 

4 



W.S. Chung, G. Junker, L.M. Nieto et al. 

Fig. 2. Plot of the probability density (45) for the oscillating wave packet at 𝑡 = 𝜋∕4𝜔 (left panel) and 𝜔𝑡 = 𝜋∕2𝜔 (right panel) with parameters 𝑎 = 1 and 𝛼 = 1, and 
for 𝜀2 = 0 (pink), 𝜀2 = 0.01 (purple), and 𝜀2 = 0.02 (brown).

theory of Tsallis. Using this we derived a time-dependent 𝑞-deformed 
Schrödinger equation. We investigated the time-evolution of a Gaussian 
wave packet based on this 𝑞-deformed Schrödinger-Tsallis equation. Be
cause there is no closed expression for the time evolution of such wave 
packet, we considered the time-dependent Gaussian wave packet up to 
a second order in 𝜀 = 1 − 𝑞. Thus, our results become physical for evo
lution during a small time as discussed in Section 2. We observed that 
for the free Tsallis-deformed quantum dynamics the spreading of such 
a wave packet is increased by this deformation. In a second example 
we introduced an external harmonic interaction and assumed for the 
initial state a decentralized Gaussian wave packet. Here the observed 
time-dependent behaviour of the spreading was rather different as that 
observed for the free deformed quantum dynamics, as discussed above. 
Clearly we require further investigation of the Tsallis evolution for addi
tional quantum mechanical systems such as two-level Hamiltonian with 
the initial state being an overlap of the two eigenstates with different 
energies like, e.g., a Rabi model Hamiltonian. Another interesting possi
bility is to study the 𝑞-deformed evolution of a quantum state confined 
in a box. We are currently working on both lines of research.

Let us conclude that the Tsallis deformation of the quantum mechan
ical time evolution has an observable effect but may not be calculated 
in a closed form. Only for eigenfunctions of the Hamiltonian 𝐻̂ , say 
𝐻̂𝜓𝐸 =𝐸𝜓𝐸 , we may find such a closed form:

𝜓𝐸 (𝑡) = exp
{
−𝑖 arctan[𝜀𝑡𝐸]

𝜀 

}
𝜓𝐸 . (47)

But in this case, the effect will not materialize because |𝜓𝐸 |2 =|𝜓𝐸 (𝑡)|2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. Therefore, for any effect to be observed, any initial 
state must be a linear combination of several eigenstates, as described 
here for the free quantum system and the harmonic oscillator.
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